Determination of Elastic Wave Velocity and Relative Hypocenter Locations Using Refracted Waves. Ii. Application to the Haicheng, China, Aftershock Sequence by Kaye

نویسندگان

  • M. SHEDLOCK
  • LUCILE M. JONES
  • MA XIUFANG
چکیده

We located the aftershocks of the 4 February 1975 Haicheng, China, aftershock sequence using an arrival time difference (ATD) simultaneous inversion method for determining the near-source (in situ) velocity and the location of the aftershocks with respect to a master event. The aftershocks define a diffuse zone, 70 km x 25 kin, trending west-northwest, perpendicular to the major structural trend of the region. The main shock and most of the large aftershocks have strike-slip fault plane solutions. The preferred fault plane strikes west-northwest, and the inferred sense of motion is left-lateral. The entire Haicheng earthquake sequence appears to have been the response of an intensely faulted range boundary to a primarily east-west crustal compression and/or north-south extension. The calculated upper mantle P-wave velocity is 7.6 _+ 0.09 km/sec, and the inferred crustal thickness is between 31 and 32.5 km. The low upper mantle velocity and thin crust may be indicative of local lithospheric extension.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Source Processes of the Haicheng , China Earthquake from Observations of P and S Waves By

The Haicheng, China earthquake of February 4, 1975, was the first major seismic event to be predicted. In this paper, long-period teleseismic P waves and S waves from this event are compared directly to time-domain synthetic seismograms to infer the source parameters. Results indicate the focal mechanism of the earthquake is nearly left-lateral strike slip along a northwest striking nodal plane...

متن کامل

Stress Waves in a Generalized Thermo Elastic Polygonal Plate of Inner and Outer Cross Sections

The stress wave propagation in a generalized thermoelastic polygonal plate of inner and outer cross sections is studied using the Fourier expansion collocation method. The wave equation of motion based on two-dimensional theory of elasticity is applied under the plane strain assumption of generalized thermoelastic plate of polygonal shape, composed of homogeneous isotropic material.  The freque...

متن کامل

Mechanics of 2D Elastic Stress Waves Propagation Impacted by Concentrated Point Source Disturbance in Composite Material Bars

Green’s function, an analytical approach in inhomogeneous linear differential equations, is the impulse response, which is applied for deriving the wave equation solution in composite materials mediums. This paper investigates the study of SH wave’s transmission influenced by concentrated point source disturbance in piezomagnetic material resting over heterogeneous half-space. Green function ap...

متن کامل

Determination of Shear Wave Velocity and Attenuation from Waveforms in Low Velocity Formations

In boreholes where formation shear velocity is lower than borehole tluid velocity neither refracted shear waves nor pseudo-Rayleigh waves can propagate. When frequency response of the sonde does not extend to low frequencies (e.g. 2 kHz) Stoneley waves are not excited efficiently. In such cases refracted P, leaking modes (PL) and tluid waves become dominant phases on a full waveform acoustic lo...

متن کامل

Wave Reflection and Refraction at the Interface of Triclinic and Liquid Medium

A Mathematical model has been considered to study the reflection and refraction phenomenon of plane wave at the interface of an isotropic liquid medium and a triclinic (anisotropic) half-space. The incident plane qP wave generates three types of reflected waves namely quasi-P (qP), quasi-SV (qSV) and quasi-SH (qSH) waves in the tric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005